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SUMMARY

In this paper, we develop a two-dimensional vertical numerical model for simulating unsteady free-surface
flows, using a non-hydrostatic pressure distribution. A fractional step numerical procedure is employed.
The governing differential equations are discretized using the finite-element method. The velocity and
salinity fields are approximated using the so-called linear non-conforming PNC

1 element, and pressure and
free-surface elevation are discretized using linear continuous P1 approximations. This procedure is very
efficient and could also be applied to hydrostatic flow problems. Our numerical scheme is validated by
three test cases, namely a deepwater standing wave, the propagation of a solitary wave in a long channel
and the density-driven flow. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In a number of numerical models (e.g. [1–3]), the hydrostatic pressure assumption has been
used to study natural free-surface flows (rivers, lakes, estuaries, oceans, etc.). It assumes that
the acceleration and eddy viscosity terms in the momentum equation for the vertical velocity
component are much smaller than the gravitational acceleration and can thus be neglected. This
assumption is valid in many situations and its use is motivated by the fact that the vertical length
scale is much smaller than the horizontal one. However, it is well known that the hydrostatic
assumption is not valid in the cases of short waves, stratification induced by strong horizontal
density gradient, and flows over abruptly changed bottom topography. In such cases, the effects
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of the non-hydrostatic pressure term may be significant compared with the hydrostatic one, and
hence, it cannot be neglected in numerical simulations.

More recently, several authors have developed hydrodynamic models that include the non-
hydrostatic pressure term in the simulation of free-surface flows. For example, Casulli and
Stelling [4] introduced a semi-implicit fractional step method using a finite difference scheme
for the spatial discretization and Casulli [5] added a correction for the free surface to reduce
the splitting error. By following the same solution procedure, Mahadevan et al. [6] developed a
non-hydrostatic mesoscale ocean model by using the finite volume method. Further, Chen [7] intro-
duced a double predictor–corrector semi-implicit finite difference procedure. Stelling and Zijlema
[8] presented an accurate approximation of vertical gradient of the non-hydrostatic pressure based
on the Preissmann scheme. By adding the non-hydrostatic component, Jankowski [9] updated an
existing finite-element (FE) model (in the TELEMAC system) and used equal-order linear interpo-
lation functions for pressure and velocity, i.e. the P1–P1 FE pair. All these non-hydrostatic models
employ a fractional step (operator-splitting) technique that splits the pressure into its hydrostatic
and non-hydrostatic components and divides the differential operator in the momentum equations
into several parts according to their physical processes. The original momentum equations are thus
split into few simpler equations which are solved more easily.

Instead of using the fractional step technique and the pressure splitting, Huerta and Liu [10]
applied the arbitrary Lagrangian–Eulerian (ALE) and the mixed SUPG FE methods for computation
of flows with large surface movements. In order to solve the resulting coupled equation system,
they used a predictor–multi-corrector scheme. Ramaswamy [11] developed a model based on the
ALE technique able to deal with various wave problems and density currents with a free surface
as well. He used a velocity correction method based on the Poisson pressure equation and found
the surface from the kinematic boundary condition.

In the present work, we develop a fully non-hydrostatic model for two-dimensional vertical
free-surface flows by using a non-conforming FE approximation for velocity and salinity (PNC

1 )
and a linear conforming approximation for free-surface elevation and hydrodynamic pressure (P1).
The employed FE pair is denoted as PNC

1 –P1 [12–14] and has been successfully used in [15] for
advection-dominated flows. Further, an accurate representation of the non-linear Rossby modes
has been obtained in [16] using this pair. The proposed numerical scheme is validated using three
test cases: deepwater standing wave, propagation of a solitary wave in a long channel and the
density-driven flows.

This paper is organized as follows. A review of projection methods for Navier–Stokes equations is
mentioned in Section 2. The governing equations and the non-hydrostatic fractional step algorithm
are presented in Sections 3 and 4, respectively. The FE mixed formulation follows in Section 5.
Simulation of three test cases is performed in Section 6 using the proposed FE scheme and some
concluding remarks complete the study.

2. REVIEW OF PROJECTION METHODS FOR THE NAVIER–STOKES EQUATIONS

Projection methods have been introduced in [17, 18]. They are time-marching procedures based
on a fractional step technique that may be viewed as a predictor–corrector strategy aiming at
decoupling incompressibility and viscous diffusion effects. The main idea of these methods is to
solve sequentially a number of smaller linear equation systems instead of an iterative solution of a
larger one, usually non-linear and slowly converging. The distinction between the direct coupled
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and the fractional decoupled approaches lies in the treatment of the incompressibility constraint.
While in the direct method the continuity equation appears explicitly as a constraint on the velocity
field, in the decoupled pressure method the momentum and continuity equations are only coupled
sequentially and the coupling appears in the corrections that follow from the solution of a derived
Poisson equation for pressure.

The space-discretized Navier–Stokes equations are expressed in the matrix form as

M
�u
�t

+N (u)u+Ku+Cp=F (1)

CTu=G (2)

where u and p denote the velocity and the pressure, respectively, M , N (u), K and C are the
mass, advection, viscous and gradient matrices, respectively, and F and G are vectors that include
boundary conditions on velocity.

In the following, we briefly describe the projection algorithm corresponding to the projection 2
method in [19, 20]. Starting with n=0, given u0 and p0:

1. Solve the provisional velocity ũn+1=(ũn+1, w̃n+1)

1

�t
M(ũn+1−un)+N (un)un+K ũn+1+MM−1

L Cpn =Fn (3)

or

(M+�t K )ũn+1=Mun+�t[Fn−N (un)un−MM−1
L Cpn] (4)

Note that the matrix MM−1
L in (3), where ML is the lumped mass matrix, is introduced in

[19, 20] in place of the identity matrix (I ) in order to improve the stability of the numerical
computations. Two techniques are usually employed to perform the lumping. The first one
amounts to add to the diagonal elements of the consistent mass matrix the off-diagonal
elements so that the total ‘mass’ associated with a node is conserved [21]. Secondly, mass
lumping may be achieved by introducing reduced or inexact quadrature, where the sampling
points are the nodes of the element [22]. It is important to emphasize that approximating
velocity using the PNC

1 FE (see Section 5) leads to a ‘naturally’ diagonal mass matrix
M in (3). This is due to the orthogonality property of the non-conforming linear basis
functions [23]. Consequently, we have M=ML and hence MM−1

L = I in (4) when the PNC
1

FE approximation is employed.
2. Find un+1 by solving

1

�t
M(un+1− ũn+1)+MM−1

L C(pn+1− pn)=0 (5)

or

un+1= ũn+1−�tM−1
L C�n+1 (6)

where �n+1= pn+1− pn is the solution to the following Poisson equation:

CTM−1
L C�n+1= 1

�t
(CTũn+1−G) (7)

obtained by combining (6) and the incompressibility constraint (2) at time n+1.
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3. Finally, update the pressure

pn+1= pn+�n+1 (8)

We now describe the governing equations that are employed in the proposed scheme.

3. GOVERNING EQUATIONS

We consider a physical domain that is bounded vertically by the free surface z=�(x, t) and the
bottom z=H(x), i.e. the distance between the bottom and the reference level z=0, as shown
in Figure 1. The computational domain variability is taken into account by standard �-mesh
structure which is well suited to many geophysical applications. The �-transformation involves
linear stretching of the mesh between the bed and the free surface. This has the advantage of
avoiding the remeshing procedure that is usually necessary when Cartesian coordinates are used,
due to the moving free surface. The transformation from the physical (x, z, t) to the �-transformed
(x,�, t) coordinates is based on the following mapping:

�= z−H

�−H

and for a variable Q(x, z, t) we have

dQ

dt
(x, z, t)= �Q

�t
(x,�)+u

�Q
�x

(x,�, t)+w�
�Q
��

(x, t)

where w� is the following transformed vertical velocity component w in �-coordinates (x,�):

w� = d�

dt
= ��

�t
(x, z)+u

��
�x

(x, z, t)+w
��
�z

(x, t)

For the sake of simplicity the �-mesh structure, although used in the model and numerical simu-
lations, is not formally written in the remaining of the paper.

The governing two-dimensional, primitive variable equations describing free-surface flows are
the Navier–Stokes equations. The momentum equations are

�u
�t

+u
�u
�x

+w
�u
�z

=−1

�

�p
�x

+�x
�2u
�x2

+�z
�2u
�z2

(9)

η

Plane of reference

H

z=0

Figure 1. A layer of fluid with varying bottom and free surface.
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�w

�t
+u

�w

�x
+w

�w
�z

=−1

�

�p
�z

−g+�x
�2w
�x2

+�z
�2w
�z2

(10)

where u=(u(x, z, t),w(x, z, t)) is the velocity field with u and w being the velocity components in
the x- and z-directions, respectively, �(x, z) is the density field, g is the gravitational acceleration,
and �x and �z are the eddy viscosity coefficients in the x- and z-directions, respectively.

The mass conservation is expressed by the incompressibility condition

∇ ·u= �u
�x

+ �w

�z
=0 (11)

The kinematic condition at the free surface is

��

�t
+u�

��

�x
−w� =0 (12)

where �(x, t) is the free-surface elevation and u� and w� are, respectively, the restrictions of the
velocity components u and w at the free surface.

The transport equation for salinity S(x, z) is expressed as

�S
�t

+u·∇S=�x
�2S
�x2

+�z
�2S
�z2

(13)

where �x and �z are the eddy dispersion coefficients in the x- and z-directions, respectively. The
values of � are obtained from S by using the international equation of state for seawater (IES80)
[24] with constant temperature and pressure.

The pressure p in (9) and (10) can be decomposed into the sum of its hydrostatic and non-
hydrostatic components denoted by pH and �, respectively, with

p= pH+�=�g(�−z)+� (14)

The momentum equations (9) and (10) can thus be expressed as

du

dt
= �u

�t
+u

�u
�x

+w
�u
�z

=−g
��

�x
− 1

�

��

�x
+�x

�2u
�x2

+�z
�2u
�z2

(15)

dw

dt
= �w

�t
+u

�w

�x
+w

�w

�z
=−1

�

��

�z
+�x

�2w
�x2

+�z
�2w
�z2

(16)

We now include the pressure splitting (14) in the fractional step algorithm.

4. NON-HYDROSTATIC FRACTIONAL STEP ALGORITHM

The velocity time derivative is split into

�u
�t

� un+1− ũn+1

�t
+ ũn+1−un

�t
(17)
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where ũn+1 is a provisional velocity field, which does not need to satisfy the incompressibility
condition (2). Given the initial conditions �0, �0 and u0 and employing (17), Equations (15)–(16)
are split into two sets of equations

ũn+1−un

�t
+un

�un

�x
+wn �un

�z
=−g

��n

�x
− 1

�

��n

�x
+�x

�2un+1

�x2
+�z

�2un+1

�z2
(18)

un+1− ũn+1

�t
=−1

�

��n+1

�x
+ 1

�

��n

�x
(19)

w̃n+1−wn

�t
+un

�wn

�x
+wn �wn

�z
=−1

�

��n

�z
+�x

�2wn+1

�x2
+�z

�2wn+1

�z2
(20)

wn+1−w̃n+1

�t
=−1

�

��n+1

�z
+ 1

�

��n

�z
(21)

and we let �n+1=�n+1−�n in (19) and (21). Zero normal velocity and free slip conditions are
imposed at solid boundaries and, at the free surface, the zero Neumann boundary condition is set
for the two velocity components.

First, ũn+1 and w̃n+1 are obtained from (18) and (20). Note that the viscous terms may be
computed at time n instead of n+1, without affecting noticeably the length of the time step in the
numerical tests performed in Section 6. This is also expected in many geophysical applications,
where the amount of viscosity is usually small. As previously mentioned, approximating u and
ũ in (18) and (20) using the PNC

1 FE leads to diagonal velocity mass matrices, and hence to a
tremendous saving in the computational cost and memory requirement. Indeed, ũn+1 and w̃n+1

are computed without the need for solving linear systems.
In a second step, by combining (19) and (21) and imposing the incompressibility condition

∇ ·un+1=0, we obtain the following equation for the hydrodynamic pressure:

∇2�n+1= �

�t
∇ ·ũn+1+ 1

�

(
��n+1

�x
��

�x
+ ��n+1

�z
��

�z

)
(22)

with the boundary conditions

�n+1=0 on the free surface (23)

��n+1

�n
=0 on the solid boundaries (24)

For the hydrodynamic pressure, the zero Dirichlet condition is set at the free surface (by referring
to Figure 1, �=0 at z=�) and the zero Neumann condition (��/�n=0) is imposed at all solid
boundaries (lateral and bottom boundaries). Note that n is the outer unit normal to the domain
boundary.

Once �n+1 is calculated, the final velocity field un+1 is then obtained from (19) to (21)

un+1= ũn+1− �t

�
∇�n+1 (25)
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and the free-surface elevation �n+1 is computed from (12) by using a �-scheme

�n+1−�n

�t
+�un+1

�
��n+1

�x
+(1−�)un�

��n

�x
−wn+1

� =0 (26)

where � is a real parameter ranging from 0 to 1.
Finally, the hydrodynamic pressure is updated

�n+1=�n+�n+1 (27)

We now introduce the spatial discretization scheme using the PNC
1 –P1 FE pair.

5. THE PNC
1 –P1 DISCRETIZATION SCHEME

Let Th be a partition of the domain � into NK triangles and Ki and � be the set of N� interior
edges �l =�Ki ∩�K j with i> j , where �Ki denotes the boundary of triangle Ki . For each edge
�l , we associate a unique unit normal n that points from Ki to K j .

The variational or weak formulation of (18) and (20) is built in such a way that the solu-
tion for velocity can be discontinuous between the elements Ki . We let V ={v∈L2(�) :v|Ki ∈
H1(Ki ), ∀Ki ∈Th}, where the Sobolev space H1 (�) is the space of functions in the square-
integrable space L2 (�), whose first derivatives belong to L2 (�). We multiply (18) and (20) by a
test function 	 belonging to V and integrate over the domain �. By following the same procedure
as in [15, 16], where the advection terms are integrated by parts, we obtain

NK∑
i=1

∫
Ki

(
ũn+1−un

�t
	−un∇ ·(un	)

)
d�+

N�∑
l=1

∫
�l

〈unun ·n〉
[	]d�

=
NK∑
i=1

∫
Ki

(
−g

��n

�x
	− 1

�

��n

�x
	−�x

�un+1

�x
�	

�x
−�z

�un+1

�z
�	

�z

)
d� ∀	∈V (28)

NK∑
i=1

∫
Ki

(
w̃n+1−wn

�t
	−wn ∇ ·(un	)

)
d�+

N�∑
l=1

∫
�l

〈wnun ·n〉
[	]d�

=
NK∑
i=1

∫
Ki

(
−1

�

��n

�z
	−�x

�wn+1

�x
�	

�x
−�z

�wn+1

�z
�	

�z

)
d� ∀	∈V (29)

where d�=dx dz is the area element and 〈�〉
 =( 12 +
)�|Ki +( 12 −
)�|K j and [�]=�|Ki −�|K j ,
respectively, denote the average and the jump of � on the edge �l , where |�l | is the length of �l .
The parameter 
∈[− 1

2 ,
1
2 ] permits to orient the advective flux. Choosing 
=0 leads to a centred

advection scheme which usually generates false extrema for strong advective flows since it is
directionally symmetric, contrary to advection. A more stable scheme, interpreted as an upwind
scheme, can be derived by selecting 
= 1

2 sign(u.n), as in [15], i.e. by taking into account the
directionally oriented nature of the flow.
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The weak formulation of (13) is also built in such a way that the solution for salinity can be
discontinuous between the elements Ki . By following the same procedure as in [15] and previously
in (28) and (29), we obtain

NK∑
i=1

∫
Ki

(
Sn+1−Sn

�t
	−Sn∇ ·(un	)

)
d�+

N�∑
l=1

∫
�l

〈Snun ·n〉
[	]d�

=
NK∑
i=1

∫
Ki

(
−�x

�Sn+1

�x
�	

�x
−�z

�Sn+1

�z
�	

�z

)
d� ∀	∈V (30)

where natural boundary conditions are used to perform the integration by parts of the dispersion
terms.

Let � and � be in a subspace W of H1 (�). The weak formulation of (22) and (26) requires the
test functions � and  belong to W , such that

−
∫

�
∇�n+1 ·∇ �d�+

∫
��

∇�n+1 ·n �d� = − �

�t

∫
�
ũn+1 ·∇�d�+ �

�t

∫
��

ũn+1 ·n �d�

+
∫

�

1

�

(
��n+1

�x
��

�x
+ ��n+1

�z
��

�z

)
�d� (31)

∫
�

(
�n+1−�n

�t

)
d�+

∫
�

�un+1 ��n+1

�x
d�=−

∫
�
(1−�)un�

��n

�x
d�+

∫
�

wn+1
� d� (32)

where d� denotes counter-clockwise integration around the boundary ��. Contrary to �(x, z),
the test function  depends only on x . By applying the boundary conditions (23) and (24), the
boundary integral in the LHS of (31) vanishes. Note that the weak formulation of (25) is

∫
�
un+1 ·ud�=

∫
�
ũn+1 ·ud�−

∫
�

�t

�
∇�n+1 ·ud� (33)

where the x- or the z-component of u is formally denoted by 	, and for (27) we obtain

∫
�

�n+1�d�=
∫

�
(�n+�n+1)�d� (34)

Here, we choose to approximate S in the same space than the velocity variables (using the PNC
1

FE approximation) and not with continuous P1 FE as for �. This choice is motivated by the fact
that in [15, 16] very good results have been obtained for the advection equation using the PNC

1
FE compared with the continuous P1 one. Consequently, we admit a small inconsistency which
seems to have no effect in the numerical tests performed in this paper.

The Galerkin FE method employing the PNC
1 –P1 pair is now used to spatially discretize

(28)–(34). The PNC
1 discretization approximates the velocity components u and w and the salinity S
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at triangle midside nodes, and the linear basis function satisfies

�M (xM , zM )=1 (35)

�M (xN , zN )=0 if M 	=N (36)

at midside nodes M and N of coordinates (xM , zM ) and (xN , zN ), respectively. The PNC
1 basis

function is hence zero outside the element’s two-triangle support. Since this particular representation
of velocity is continuous only across triangle boundaries at midedge points, and discontinuous
everywhere else around a triangle boundary, this element is termed non-conforming (NC) in the
FE literature. Standard piecewise linear continuous basis functions (P1) are used to approximate
the surface elevation at triangle vertices.

The Galerkin method approximates the solution of (28)–(34) in finite-dimensional subspaces.
For triangle K ∈Th , let P1(K ) denote the space of linear polynomials on K . The discrete solution
uh =(uh,wh) and Sh sought belong to a finite-dimensional space Vh defined to be the set of
functions whose restriction on K belongs to P1(K )×P1(K ), with uh and Sh being continuous
only at the midpoints of each face of Th , and uh satisfying the velocity boundary conditions.
Since velocity nodes are located at triangle midedge points, the direction of the local tangential
vector tp is uniquely defined along the boundary. The discrete solutions �h and �h are sought in a
finite-dimensional subspace Wh , where Wh is defined to be the set of functions whose restriction
on K belongs to P1(K ), and being continuous at each vertex of Th .

Introducing the FE basis leads to a Fe statement as in (28)–(34) but with u, w, � and � replaced
by the FE trial functions uh , wh , �h and �h . We then decompose the integrals over the domain �
into triangle contributions and uh , wh , �h and �h are expanded over all triangles of Th .

The most useful property of the PNC
1 basis functions is their orthogonality property [23]∫

�
	M	N d�= AM

3
�MN (37)

where AM is the area of the support of 	M , and �MN is the Kronecker delta. Such an unusual
property increases the computational efficiency of the model. Indeed, in (33), and also in (28)–
(30), if the viscous and dispersion terms are evaluated at time n (which is the case in the present
study and for many geophysical applications), the mass matrices are diagonal. This leads to a
tremendous saving in the computational cost and memory requirement and only linear systems for
� and � in (31) and (32), not for velocity and salinity, need to be solved. Such a saving is enhanced
by considering that � is located at vertex nodes (there are usually three times less vertices than
midside nodes) and � and � depends only on x .

Finally, it seems that we have committed a variational crime [23] by omitting the boundary
viscous terms in (28) and (29). As shown in [15], those terms naturally vanish by using the PNC

1
discretization.

6. NUMERICAL EXPERIMENTS

The present non-hydrostatic numerical model is validated using three test cases including deepwater
standing wave, propagation of a solitary wave in a long channel and the density-driven flow. In this
section, we choose �=1 in (32); however, the use of �= 1

2 leads to similar results with insignificant
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differences. Further, all the experiments are conducted with a flat bottom, i.e. H is assumed to be
constant.

6.1. Standing wave in a closed basin

We consider here a small amplitude deepwater standing wave in a closed basin. As the initial
condition, a sloped free surface and no motion is taken, i.e. a configuration with maximum potential
energy. A wave motion begins and in the moment, when the free surface is horizontal, the whole
available potential energy has been exchanged into kinetic one. When the highest water level at
the opposite wall is reached, the maximum potential and minimum kinetic energy state is achieved
again, just as at the very beginning of the simulation.

The basin is shown in Figure 2, with H =10m and L=10m. The initial free surface is

�(x,0)=�0 cos(kx), 0<x<L

and a zero initial velocity is assumed. We let the initial wave amplitude wave to be �0=0.1m
and k=�/L . According to the small amplitude wave theory [25, 26], with �0
H , describing
the resulting wave motion in the plane (x, z), the solution for free-surface elevation �, velocity
components (u,w) and non-hydrostatic pressure � are

�(x, t)=�0 cos(kx)cos(�t)

u(x, z, t)=−��0
sinh[k(z+H)]
cosh(kH)

sin(kx)sin(�t)

w(x, z, t)=��0
cosh[k(z+H)]

sinh(kH)
cos(kx)sin(�t)

�(x, z, t)=−�g�+�g�0
cosh[k(z+H)]

cosh(kH)
cos(kx)cos(�t)

The proper initial conditions for t=0 are

�(x,0)=�0 cos(kx), u(x,0)=0, w(x,0)=0
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cos(kx)

Z

X

(x,z)η

H

L

Figure 2. A standing wave in a closed basin.
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Figure 3. Time series for the simulated free surface elevation at the boundary edges
x=0m, where �(0, t) is represented by curve 1, and x= L=10m, where �(L , t) is

represented by curve 2, after 11 s of simulation.

We take g=10m/s2 and �=1000kg/m3. Applying the general small amplitude wave theory,
the wave celerity is c=[(g/k) tanh(kH)]1/2=5.63m/s and the period of oscillation is T =3.55s.
The mesh resolution is 0.2m in both horizontal and vertical directions, with 2601 nodes and 5000
triangular elements. The model is run for 11s using a time step of 0.01s. In Figure 3, time series
for the simulated surface elevation are displayed at the boundary edges x=0m (curve 1) and
x=10m (curve 2) at the end of the simulation, i.e. after 11 s. The amplitude remains constant
and approximately equal to the initial one (0.1m). The wave period for the simulated oscillation
is about 3.55 s, which corresponds to that calculated from short wave theory. It is illustrative to
show the results when both the states of maximum and minimum kinetic energy are achieved.
Theoretically, the maximum kinetic energy corresponds to one-fourth of the oscillation period, i.e.
approximately 0.89 s, and the minimum kinetic energy corresponds to one full period.

In Figure 4, the velocity and hydrodynamic pressure are shown for one-fourth oscillation period
(t=0.89 s). From the analytical solution described above, the horizontal velocity should range
between 0 and 0.17634m/s and the vertical one at the free surface should range from −0.1777 to
0.1777m/s. The numerical results range from 0 to 0.1775m/s for the horizontal velocity and from
−0.1753 to 0.1782m/s for the vertical one. They are thus quite close to the analytical ones. For
the hydrodynamic pressure, it is obvious that, at t=T/4=�/2�, it should vanish. The maximum
value obtained here (28.74 Pa) is very small. The observed small oscillations are due to the fact that
the hydrodynamic pressure has a very weak amplitude (28.74 Pa) compared with the hydrostatic
one (100 000 Pa), leading to a ratio of 0.03%.

In Figure 5, the results are shown for one full period (3.55 s) when the state of minimum kinetic
energy is achieved again. The analytical solution gives u=w=0 everywhere and the hydrodynamic
pressure should range from −1000 to 1000 Pa. The computed results, less than 5×10−3m/s for
the velocities and from −941.72 to 885.86 Pa for the hydrodynamic pressure, are again close to
the analytical ones. The fact that the fluid is not completely still after one period may suggest that
the momentum is totally null. In the numerical model, the non-linear terms (convective) are not
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Figure 4. Velocity (left) and hydrodynamic pressure (right) for one-fourth of the oscillation period. The
horizontal velocity component u ranges between 0 and 0.1775m/s, and the vertical velocity component
w ranges between −0.1753 and 0.1782m/s. For the hydrodynamic pressure 15 isolines range between 0

and 28.74 Pa. The maximum value for the free-surface elevation is 4.56×10−4m.

Figure 5. Velocity and hydrodynamic pressure for one oscillation period. The horizontal velocity component
u ranges between −1.34×10−3 and 4.86×10−3m/s. The vertical velocity component w ranges between
−8.74×10−4 and 1.53×10−3m/s. For the hydrodynamic pressure 17 isolines range between −941.72

and 885.86 Pa. The maximum value of the free-surface elevation is 0.10121m.

set to zero and they could contribute to perturbate the phase between the surface elevation and the
velocity.

6.2. Solitary wave propagation in a long channel

The analysis of solitary wave propagation is important for the design of breakwaters or sea
walls and other offshore structures. The solitary wave is defined as a single elevation above
the surrounding undisturbed water level, producing a definite transport in the direction of wave
propagation only. The wave travels without change of shape and with essentially constant celerity.
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Figure 6. The initial wave shape and the mesh used in test of Section 6.2.

Laitone’s approximation [27] of a solitary wave is frequently used for comparative study. In these
approximations, velocity, pressure and free-surface elevation can be expressed as

�(x, t)=H+�sech2
(√

3

4

�

H3
(x−ct)

)
(38)

u(x, z, t)=√gH
�

H
sech2

(√
3

4

�

H3
(x−ct)

)
(39)

w(x, z, t)=√3gH

(
�

H

)3/2( z

H

)
sech2

(√
3

4

�

H3
(x−ct)

)
tanh

(√
3

4

�

H3
(x−ct)

)
(40)

p(x, z, t)=�g(�−z) (41)

c=
√
gH

(
1+ �

H

)
(42)

where � and H are the initial wave height and the still water depth, respectively.
We use a rectangular domain with H =10m and a length L=160m. The initial wave crest is

located in the middle of the domain with a height of 2m (see Figure 6). We choose g=9.8m/s2

and �=1000kg/m3, and the time step �t=0.02s is used. Computed wave profile, velocity and
pressure at elapsed times 7.7 and 15 s are shown in Figures 7 and 8, respectively. The wave speed of
a solitary wave given by Laitone’s approximation (42) is c=10.84m/s. Because the half-horizontal
length of the channel is 80m, the wave crest arrives at the right-hand vertical wall at time 7.7 s.
This theoretical value compares well with the computed one, which is 7.68 s.

The run-up height of a solitary wave on a vertical wall R can be obtained by Laitone’s approx-
imation:

R

H
=10+2

�

H
+ 1

2

(
�

H

)2

With the choice �/H =0.2, we obtain R=14.2m. The numerical value computed by our model
is R=14.29m, while Ramaswamy [11] obtained R=14.48m. At t=15s, the wave crest returns
at its initial position and its height is 11.98m. In this test case, the computed pressure is almost
hydrostatic which suits well with (41). Here, the use of the non-hydrostatic component � does not
perturb the solution of this quasi-hydrostatic flow, and its value is negligible compared with the
hydrostatic component of the pressure.
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Figure 7. Computed solutions at time t=7.7s: (a) the velocity field; (b) the velocity component u ranges
between −0.277 and 0.116m/s; (c) the velocity component w ranges between −0.118 and 0.0724m/s;

and (d) the pressure ranges between 0 and 131 920 Pa. All the results are shown with 11 isolines.

Figure 8. Computed solutions at time t=15s: (a) the velocity field; (b) the velocity component u ranges
between −2.181 and 0.166m/s; (c) the velocity component w ranges between −0.588 and 0.503m/s;

and (d) the pressure ranges between 0 and 115 143 Pa. All the results are shown with 11 isolines.

As we compare the numerical solution with an approximative one, we cannot quantitatively
express the difference between the two. However, the test case has been chosen to fit with the
Laiton’s approximation and the numerical solution agrees very correctly with it.

6.3. Analysis of density flow

A density flow can be defined as a flow which is mainly driven by pressure gradient that results
from the difference in the fluid densities. Examples include a muddy underflow in a lake or
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Figure 9. Computed salinity distribution for the low density contrast case at times: (a) 25 s; (b) 50 s; (c)
75 s; and (d) 100 s; and (e) the velocity field at t=50s where the minimum (blue) and maximum (red)

values of u and w are (−0.1028,0.1043) and (−0.0456,0.0453), respectively.

ocean, a moving atmospheric cold front and the mixing of fluids in many chemical engineering
circumstances. We study here two examples of density flows: the first with a small difference in
density and the second with a significant difference in density. Note that in both experiments the
lack of mesh resolution prevents the Kelvin–Helmholtz instability to develop.

In the first experiment, a rectangular basin with a length L=30m and a depth H =4m has a gate
at the half length of the basin that separates fresh water (right with S=0psu) from salty water (left
with S=1psu). A 150×20 mesh is used (both horizontal and vertical resolutions are 0.2m) and
the time step is 0.05 s. A low density contrast is considered where the two fluids have the density
values 1000.722 and 999.972kg/m3 and g=10m/s2. The fluid viscosity is �x =�z =0.001m2/s,
and the eddy dispersion coefficients for the salinity in (13) are �x =0.01m2/s and �z =0m2/s. At
initial time the impermeable gate is removed and water starts to move under the baroclinic force
caused by the horizontal density gradient. In Figure 9, the salinity distribution is shown at times
t=25,50,75 and 100 s. The velocity field is shown at time t=50s and the maximum velocity
calculated by the model in the bottom layer is nearly horizontal at 0.106m/s.
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Figure 10. For the bottom layer: (a) maximum front velocity versus time and (b) velocity profile at t=50s.

Based on the conversion of potential to kinetic energy using the inviscid frictionless Bernoulli
equation [28], the following formula

u=
√
2

2

√
�2−�1
�2+�1

gH (43)

gives an estimation of the front mean velocity, i.e. 0.0866m/s, for �1=1000.722kg/m3 and
�2=999.972kg/m3. The model maximum front velocity, shown in Figure 10(a), is not the best
parameter to be compared with the estimated value obtained from (43). In order to obtain a
meaningful comparison, the velocity profile of the moving layer, shown in Figure 10(b), has been
numerically integrated from the bottom to a depth where the velocity is almost null, i.e. very near
the half depth. The resulting mean front velocity, 0.0728m/s, is obtained and it is found to be
smaller than the predicted value 0.0866m/s in (43). We argue that this behaviour is physically
coherent because the Bernoulli equation does not take into account the non-linear effects due to
momentum or the even smaller effects of the viscosity.

The second density flow experiment considers a high-density contrast problem. The densities
of both fluids are 1000 and 1200kg/m3. A rectangular basin with a length L=48m and a depth
H =16m has initially a gate at x=32m that separates the two fluids (the heavy fluid being in
the right side of the basin). A 96×32 mesh is used (both horizontal and vertical resolutions are
0.5m) and the time step is 0.005 s. We let the fluid viscosity to be �x =�z =0.45m2/s, and the
eddy dispersion coefficients for the salinity are �x =0.0001m2/s and �z =0m2/s. In Figure 11,
the salinity distribution is displayed at times t=2,4,6,8 and 10 s. The velocity field is shown at
time t=6s and the maximum velocity calculated by the model in the bottom layer is again nearly
horizontal at 2.976m/s in the left direction. The model maximum front velocity is displayed in
Figure 12(a). In order to obtain a meaningful comparison, the velocity profile of the moving layer
is again shown in Figure 12(b) and the numerically integrated mean front velocity is −2.096m/s.
Again, this value is found to be smaller than the predicted one, i.e. 2.697m/s obtained from (43).
The argument used above for the first experiment is still valid to explain the discrepancy between
these two values.
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Figure 11. Computed salinity distribution for the high density contrast case at times: (a) 2 s; (b) 4 s;
(c) 6 s; (d) 8 s; (e) 10 s; and (f) the velocity field at t=6s where the minimum (blue) and maximum

(red) values of u and w are (−2.976,3.610) and (−1.432,1.535), respectively.
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Figure 12. As for Figure 10 but at t=6s.

7. CONCLUSION

In this paper, we have presented and validated a hydrodynamic model for two-dimensional vertical
free-surface flows by using a fractional step algorithm. The non-hydrostatic Navier–Stokes equa-
tions are solved using the so-called PNC

1 –P1 FE pair. The velocity and salinity fields are approx-
imated by non-conforming linear FEs (PNC

1 ), and both pressure and free-surface elevation are
approximated by a linear continuous approximation (P1). The most useful property of the PNC

1
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basis functions is their orthogonality property, which considerably increases the computational
efficiency of the model. Indeed, the PNC

1 mass matrix is diagonal leading to a tremendous saving
in the computational cost and memory requirement.

Non-conforming FE schemes are well suited to advection-dominated flows. The inherent flexi-
bility of the method permits to represent accurate solutions with steep gradients. Promising results
have been obtained in [15] for a transport scalar equation using the PNC

1 –P1 pair and in [16]
for the propagation of the non-linear Rossby modes. In the present paper, the model is validated
using three numerical tests, including a deepwater standing wave, the propagation of solitary wave
in a long channel and the density-driven flow. The results are found in good agreement with the
analytical solutions when they are available. These encouraging results suggest undertaking further
extension towards a three-dimensional non-hydrostatic model with a realistic bathymetry. Further,
we project to use the model to study the effect on thermal stratification of the three-dimensional
flow near the water intake of hydropower plant. Such a case presents both the hydrostatic pres-
sure in the reservoir and highly non-hydrostatic pressure near the intake with the combination of
stratified flows in winter and summer regimes.
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